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ABSTRACT

The emphasis of mastery learning instruction is unique in that

concern is not only with raising the level of achievement but also

with reducing the variability of achievement,among the students

instructed.. The Glass effect size estimator, presently used as an

index to measure the effectiveness of mastery learning experiments,

is examined relative to these two conditions. This paper advances

the thesis that the Glass effect size estimator represents only

one dimension in the assessment of mastery learning experimental

outcomes. The second dimension of effect, relevant to mastery

learning outcomes, is the variability of the effect. The index to

be proposed is directed at assessing this condition, in addition

to the information provided by the effec,t size estimator.



A PROPOSED ADDITIONAL INDEX TO GLASS' EFFECT SIZE ESTIMATOR'

WITH APPLICATION TO MASTERY LEARNING EXPERIEMENTS

Stimulated by the publication of Jacob Cohen'l book, Statistical

Power Analysis for the'Behavioral Sciences (1969), and popularized

by Glass and others (Glass, 1976; Smith ,and Glass, 1977; Rosenthal

and Rubin, 1978; Kulik, Kulik and Cohen, 1979; Glass and Smith,

1979), the concept of effect size (ES) has received much attention as

a practical means of assessing treatment effectiveness and as a tool

for the quantitative synthesis of research. Of particular interest

in this paper is the utilization of the Glass effect size estimator

as an index to measure the effectiveness of individual mastery

-learning (ML) experiments. The emphasis of mastery instruction is

unique in that the ML philosophy is concerned not only with raising

the level of achievement but also with reducing the variability of

achievement. "As we have proposed elsewhere (Block, 1974), if

mastery approaches do in fact help more students to learn better

than has traditionally been the ease, the mastery-taught students

should exhibit greater learning, as well as less variability in

their learning, than nonmastery-taught students. That is, the

mastery-taught students should not only learn better,,they should

learn more like one another" (Block and Burns, 1977).



Traditional instructional, models are not specifically concerned,

a priori, with the dual problems of increasing the level of achieve-

ment and concomitantly reducing the variability of performance as the

major outcomes of instruction. In these models, concern is usually

concentrated .upon the overall level of treatment effectiveness (effect

size) as measured by the differences in average level of achievement.

Benjamin Bloom believes that the outcome of reduced variance

resulting from ML experiments is one useful index of what his

theory of school learning promises (Bloom, 1976). Block and Burns

(1977) in their review of 39 ML experiments involving 97 compari-

sons of average achievement test scores in a variety of subject

areas report that mastery-taught students scored higher than

nonmastery-taught students 89 percent of the time, and significantly

higher 61 percent of the time. In addition, 26 of the 39 reviewed

ML experiments reported variance data involving 80 comparisons. Of

the 80 comparisons, mastery students exhibited less variability 74

percent of the time on achievement test scores,than nonmastery-

taught students. Upon computing the ES estimator for each of these

comparisons, Block and Burns,,report that mastery-taught students,

scored on the average, two-thirds of a standard deviation higher

than nonmastery-taught students. Similar results are reported by

. Bloom (1976).
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It is clear then that the dual importance accorded to level and

variability of achievement within the ML context necessitates the

development of indices reflecting these conditions. The measure-

ment of levels of achievement, vis a vis effect size, is appropri-

ate in "traditional" instructional experiments asnoted previously.

However, this measure represents only one dimension in the assess-

ment of ML experimental outcomes. The second dimension of effect,

relevant to ML experiments, is the "variability" of the effect.

The index to be proposed is directed at assessing this condition in

addition to the information provided by the ES estimator.

THE GLASS EFFECT SIZE ESTIMATOR

The ES estimator 'as proposed by Glass (1976) is defined as t4

difference between the means of the experimental (RE) and control

groups (Tc) divided by the standard deviation of the control group

(SC). The index is a pure, "dimensionless," number expressed in

terms of the standard deviation metric. Simply stated, ". . the

effect size (ES) is some specific non-zero value in the population.

The larger this value, the greater the degree to which the phenom-

enon under study is manifested" (Cohen, 1977).- Thus, ES = 1.0,

indicates that the experimental group mean exceeds the control

group mean by one standard deviation; assuming normality, only 16

-3-
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percent of the control group participants are higher than the

average experimental participant. This interpretation is justified

if the two groups compared are distributed normally on the outcome

measure and have homogeneous variances. However, these assumptions

are not tenable for an ML experiment where the conditions of non-

homogeneous variances and non-normality are likely to result. (In

a latter section of this paper, pertaining to the application of

the proposed index to the results of actual ML experiments, a test

of the non-homogeneity of variances is conducted to verify, the

outcome of this condition.),

Although Glass (1978) notes that the definition of ES appears

uncomplicated, he acknowledges that heterogeneous variances pose

substantial difficulties in its formulation and interpretation.

He then proceeds to present his arguments for utilizing the control

group standard deviation as the metric of standardization via the

consideration of the following examples:

Experimental Control

Means = 52 T(C = 50

Standard Deviations SE Sc = 10

Basis of Standardization Effect Size

SE 1.00

Sc, 0.20

(SE + Sc)/2 0.33

-4-



He states that the measure of ES could be calculated by using

. either SE, Sc or a combination of both, but notes the huge

differences resulting. The average of the two standard deviations

should be dismissed in his words "as merely a mindless statistical

reaction to a perplexing choice" (Glass, 1978), and argues that the

two remaining estimates are correct.

In Glass' second example, he considers two experimental groups

compared with a control with the following results:

\

Me hod A MethOd B Control

Means 56 50 48

Standard Deviations 10 1 4

His argument follows:

If effect sizes are calculated using the standard

deviation of the "method," then ESA equals 0.20 and

ESL) equals 2.00 -- a misleading difference, con-

sidering the equality of the method means on the

dependent variable. Standardization of mean

differences by the control group standards devia-

tion at least has the advantage of allotting equal

effect sizes to equal means. This seems reason

enough to resolve the choice in favor of the control

group standard deviation (Glass, 1978).

-5-
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He further notes, however, that the problem of heterogeneous

variances remains and has no clear answer.

In the preceding example, if the mean of the control group

happened to equal 50, it is clear that the ES estimator would equal

zero in both instances, implying no differences between the groups.

This is a perplexing problem for measuring the effectiveness of

mastery learning outcomes. If Method B represented a ML group,

intuition would suggest a difference favoring that condition, i.e.,

although the level of learning is the same for all three groups,

those individuals in Method B
1

are learning, as .a group, in a more

homogeneous manner than those \in Method A and the Control: The

problem here'is one of accounting for the presence of tleterogeneous

variances, when Glass' estimate of effect size is zero:

A PROPOSED SOLUTION

The effect variability index has the property that it utilizes
1

all the descriptive statistics resulting from an experiment, i.e.,

the means and standard deviations of the groups to be compared,

and does not go to zero in the presence of equal means associated

with heterogeneous or homogeneous variances. Its utility will be

-6-



illustrated by comparing It against the results of the two previ-

ously cited examples, in addition to applying it to actual ML

experimental results to illustrate its interpretive power and

ease of application.

The proposed index is derived by creating for each experimental

group the coefficient of variation, i.e., the ratio of the sample

staidard deviation to the sample mean (Snedecor and Cochran, 1980).

The index is then formed by etablishing the ratios of the coefficients

of variation for the groups r br? compared. That is;

= CVi/CVj, i = j i = j = 1...k treatment (1)

= (si/70/(sj/1"))
groups

(si/si)(7i/7;)

The impetus for this formulation is that'each coefficient of vari-

ation reflects the amount of variability associated with a given

mean, and subsequently, the ratio of these coefficients \facilitates

the asses ment of their combined effectiveness, The inte'pretation

of this index can best be illustrated by referring to Glass' first

example:



Experimental

Means. TE = 52

Standard Deviations SE = -2

Coefficients of Variation 2/52 = .038

ES (using control group SD) 0.20

Recalling the. definition of.Ii/j,

IE/C

IE/c = (SE/Sc).(-Tc5E)

and subs6tutin

IE/C = (2/10)50/52)

. IE/c =, (.2).(.96)

IE/C =

Control

XC ' 50

SC =.10

10/50 = .20

1

-,
\,

The importance of this index.is not necessarily reflected in

the final number, but in the information provided by
\
considering'.

the factors determining the product. Each factorpresents the.
...-

relitiieTimpact of the individual ratio of the means and standard

deviations. Let us explore this result in the context of an ML

experiment.

The ES estimator equals MO, suggesting that the two groups

do not differ greatly. Although this estimate may result in a

satistically significant difference in tiie-tralitional sense, the

magnitude of the number is considered a "small' effec within the
_ _
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,context of ML experiments (Block and Burns, 1977; Bloom, 1976).

In spite of the levels of achievement being relatively similar,

the argumeht could be advanced that the lower achieving ML (Experi-

mental) students are fOr the most part all achieving at a.high

level compared to the lower achieving students in the _control group.

(SE = 2 vs Sc =

Although the two indices appear similar, ES = .20 and IE/c

= .19, their meanings are different. The closer IE/c is to zero

the greater the impact- on variability of the experimental treat-

ment; (i.e., the group represented in the numerator); whereas, the

larger the value of ES (either in a positive or negative direction)

!

the greater the effect favoring either the experimental or control

group. .As IE/c approathes.one,:the difference between the two .

, ,

, _ .
,

_

groups becomesminimal. As IE/c exceeds one\the effect variability

k
tends tO favor the control group (i.e., the group represented in

the denominator). Finally, where the ES estimator disappears in

the presence of equal experimental means and heterogeneous or

,
homogeneous variances, the proposed estimator retains thisAnformation

:-

the ratio of the means is one/ and the index"is soley dependent

o-n the ratio of standard deviations.
/

Let us illustrate this last situation by assuming that the

-control group mean in the present example equals 52. The ES



estimator equals zero (no difference in experimental effect)
I

whereas IE/c = .20,\essentially equivalent tb IE/c = .19, in which

XE = 52 and 1-(c = 50i a result primarily due to the approximate

equality of the means compared, i.e., 707E = 50/52 = .96, whereas

XC /XE = 52/52 = 1.0. Thus, the effect of heterogeneous variances

is clear in the presence of equal or nearly equal means..

It is noted that the formulation of this ratio does not neces-

sitate that the coefficient of variation of the experimental group

appear- -in -the numerator. For example, we could use IC/E, then,

IC/E (SC/SE)'(T(E/70 (2)

and substituting yields,

IC/E = (10/2)(52/50

IC/E = (5).(1.04)

IC/E = 5.2 = 1/IE/c

Since the index exceeds one, the results favor the experimental

group, i.e., the group represented in the denominator. Thus, IE/C

and Ic/E are reciprocally related. This relationship together with

a comparison of IE/c and ES are summarized in Table 1. As is trite

for all newly proposed quantitative indices, terminology such ia4

"close to zero" or "close to one" carry a'subjective interpretation,

eventually refined by familiarity with having employed the index in



TABLE 1. Characterl-stics of 'Etc

Its Interpretation

Equivalent

Condition Conditions

Interpretations

441 E/C ES

approaches

zero

approaches

one

experimental

group favored

no difference

IciE approaches

One

IC/E approaches

between groups one

greater control group

than one favored

1C /E approaches

zero

I. > SC & 3(C >7CE 75 < IE/C <
no difference .`

IE/C < .75,
treatment

favored

1I. SE < Sc d Xc < XE .75 < lEic < 1.0, small S.posItive

no difference

small S. negative,

no difference

large S. negative

control favored

-- --
III. SE >SC 3 Xc > XE

IV. Sc > Sc 8..Xc < XE

1 < 75E/C '

treatment

favored

IE/c close. to one,

no 'difference;

"significantly"

larger than one,

control favored

*75 < 1E /C <
no difference;

"significantly"

larger than one

control favored

lar4e S. positive

treatment favored

smallS. negative

no difference

large S. negative

control favored

small S. positive

'no difference

large S. positive

treatment favored
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a number of experimental situations in addition to studying the

distribution of the index (see Appendix B, derivation of the large

sample normal approximation for IE/c).. For purposes of this'

discussTOn we will adopt the convention that close to zero implies,

0 < IE/c < .35; close to one will mean, .75 < IE/c < 1.0; and IE/c

between .35 and .75 will be considered an "average" effect.

'Re'CallGlass' second example:

Means

Method A Met'ho-d-B Control

50. 50 48

Standard Deviations '-1.0 1

Applying the Glass estimator to these results, recalling that

the standardization metric is Sc = 4, ES is equal to .5 for both

methods, suggesting both conditions have equal effectiveness (recall

that this is effectiveness relative to the level of achievement

and not effectiveness relative to the reduction of variance), in

spite of heterogeneous variances. If one were to use the ES method

to estimate the relative effectiveness betWeen Methods A and B,

regardless of the standard deviation (i.e., SAN= 10 or SB . 1), ES

would equal zero suggesting no difference. A close inspection of

the results of this experiment, once again fr nt a ML viewpoint,

suggests that Method B is more effective than Method' A.

-12-
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PROPERTIES OF THE EFFECT VARIABILITY INDEX

It Can be shoW that IE/c can be expressed as a linear function

of ES (see Appendi A for derivation); i,e.,

'En I CVE /CVC = SE /SC - (CVE).(ES) (3)

Thus when ES ='.0 (equivalent to XE =lc), IE/c = SE /SC, is

simPly a function of the ratio of standard deviations., Consequently,

the meaning: of IE/c is:apparent in the presence of equal treatment

means and potentially heterogeneous variances.

In the reviewers/notes concerning 'an earlier version of this

paper (Glo.ss, Shephiard and Smith, 1983), it was noted that in-the

presence Of equalStandard deyiations, SE = Sc, the,IE/c. index.is

not invariant under a linear transformationl. The/following-example

will_ serve to illustrate this conditioo- :ASsume SE = SC ... 5 and 1-c

= 45 and XE = 55. Then IE/c = .82 and:ES = 10. If the:means were

transformed by adding 10 to each, then IE/ whereas ES

remains constant, i.e., ES = 10. If the sa ple sizes:for bOth the

control and treatment groups were, nE = nC .= 50, and applying the

large sample normal approximation results discussed. in AppendixIB,

both the initial index and the transformed index yield a nonsig,-

nificant difference between the treatment and control\ The larger

-14-
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0

the additive constant the greater the difference between the

Original 'En and the transformed estimate.of effect variability.

We must ask.how meaningful this problem is in a .ML context.

Obviously, for experiments using the same measuring instrument ,

(i.e. tests), there is no such transformation, and so there is no

problem. If the instruments used are similar (in metrical properties)

then the problem will be small. If, however, the instruments are

considerably different, then it would be possible to attain differences

in lEic that looked important,.but were due only to the particular

choice of instrument. It is the author's contention that.the

problem here is in the use of inappropriate measures and not in the

index itself. One way to circumvent such problems would be to

ensure that all instruments used in,a series of ML experiments

coOd'be located on a common scale (one could use a Rasch linking

procedure, outlined in Best Test Design, Wright and Stone 1979); it

is hard to imagine an ML experiement in which this would not be good

advice in any case. If one is comparing across experimental studies,

however, and the instruments used in each differ markedly in their

level of difficulty, then this problem remains. Such problem

these are not uncommon in indices and yet have practi5aj--application.

r example, Hedges (1981) has shown that ES itsecills.bia ed even

der homogeneous variances; howeyer; thi -,Can be control
/

ed and

ev7 ignored, so long as one is aware of the limitation''. n application-:

7"--
---',-,
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In the presence of-both unequal means and standard deviations,

the situation improves. Assume SE = 5 and Sc = 10, XE = 55 and

XC = 45., Then IE/c = .41 whereas ES = 10. Transforming both means

by adding 10 to each yields IE/c = .42, a slight increase of .01.

Finally in the presence of equal means and unequal standard

deviations, IE/c remains invariant, as illustrated by EcOation 3.

In general if X' = aX + b then

VE/C = (S /Sc)....[(aic + b)/(aTE + b)] (4)

.
and IE/cal'I'EJOf and only if, b/a < TCc and b/a < 4. The scaling

paramel.er,
,-

a, does not change the ratio of standard deviations.

Contingent upon the previous discussion, appears appropriate

to recommend that IE/c, the effe6t variability index, be used as a

tool for assessing experimental outcomes within a given research

study as opposed to between studies, relative to meta analysis

concerns. However, if tests used in a variety of experimental

situations are equivalent in'their level of difficlty, the IE/c

estimator is a suitable tool to employ.

A



APPLICATIONS TO REAL DATA

The reader is reminded that the consideration of IE/c has been

stimulated by experiments associated within the ML context, where

level and variability of achievement are both of concern as measures

of effective ML instruction, a problem not adequately accounted for

by the Glass estimator. The data examined in Table 2 are from a

study undertaken by Block (1972) in which the criterion level of

mastery was selectively varied across four treatment groups (95, 85,

75 and 65 percent mastery,levels) and the results compared to a

control, non-mastery group: Block noted "that as the performance

level attained increased, average achievement test scores rose and

the dispersion fell. The 85 and 95 percent mastery treatments not

only helped students to attain significantly higher average scores

than the non - mastery treatment, but the treatments also helped

homogenize student achievement around these scores."

For the 75 and 65 percent mastery learning groups, the ES

estimator is approximately zero; whereas 175/c = .53 and 165/c = .69

and "average" effect according to the convention adopted. earlier.

For the 95 and 85 percent'mestery groups, ES = .64 and ES = .46

respectively; whereas, Ig5/c = .31 and I85 /C = .39, effects strongly/

favoring the two ML. groups. 'These differences are due primarily to

the impact of the ratios of the standard deviations.favoring the



TABLE 2. Comparisons Between lEc and ES for Block Data

Average

Test Scores Standard

Treatment Group (Percent Correct) Deviation (Sm/S14.4) x (XNM/N) = lEiC ES

Mastery

954percent 64.9 9.09* .41 .77 .31 .64

(N =11)

85 percent 60.7 10.49* .47 .83 .39 .46

(N = 14) .

75 percent 50.8 11.79*. .53 1.00 .53

(N = 14)

65 percent 49.0 15.49 .69 1.00 .69 -.07

(N =12)

Non-mastery 50.5 22.40

(N = 25)

*Significant difference (p < .05) between treatment group standard deviation compared

to control group.
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experimental groups. Of the four comparisons permitted by the, ES

method, the 95, 85 and 75 percent mastery treatment groups' standard

deviations are significantly different from the non-mastery group

standard deviations. (The :F-test for the ratio of two variances

was employed.) For the 75 'percent mastery group comparison,

ES = .01, suggesting no difference between the treatment and control

group; whereas IE/c = .53, implying a difference between the groups

compared in the presence ofAeterogeneous variances.

ifTable 3 present the results of the matrix of all possible

comparisons among the treatment groups along with the confidence

intervals for each calculated IE/c (see Appendix B for confidence

interval formula). For example, reading down the 95 percent column,

in which the 95 percent mastery group is compared to all other

groups, each confidenCe'interval containing 1.0 indicates a non-

significant difference between the groups compared. The ES estimator

does not permit comparisons among the treatment groups, whereas the

IE/c estimator, together with the confidence intervals, implies

that no differences exist among the 9 , 85, and 75 percent groups;

between the 75 and 65 percent group ; and between the 65-percent

an&non-mastery group. All other ifferences between the treatment

groups and the non-mastery group are significant.' Once again

although the. ES = .01 suggests no difference for the' 75 vs non-

mastery group comparison, the
/
IE/c estimator does indicate a

difference between these groups.

-19-



TABLE 3. Matrix of Comparisons of for Block Data

Treatment Groups ES Estimator.

95 85 75 65

95 .64*

85 81

Treatment (.20, 1,42)1 .46*

Groups

75 .60 , .74

(.14, 1.06) (.21, 1.27) .01*

65 .44 .55 .73

(.09, .79) (.13, .97) (.17, 1.29) -.07

Nonmastery .32 .39 ,
.52 .71

(.09, .55) (.13, .65) (.17, .87) (.20, 1.22)

*Significant difference (p < .05) between treatment group standard deviation compar'ed

to control group.

1. See Note. All confidence intervals are computed at the 99 percent level.



The second set of comparisons, presented in Table 4, come from

a number of mastery learning experiments reported by Bloom (1976).

The data have been rank ordered relative to the ES estimator and
.

separated into two groups, heterogeneous and homogeneous variances.

All confidence intervals for IE/c not tontaining1.0 imply a signif-

icant difference favoring the ML group. Of the 8 comparisons within

the heterogeneous group, all IE/c estimates are significantly

different from 1.0. Of the 11 comparisons' for the homogeneous group

only 2 IEit estimates are significant, favoring the ML group: It

appears that in the presence of heterogeneous variances, the IE /C

estimator parallel's the ES index suggesting an effect favoring the

ML group; that is, not only is effect size large relative to level

of achievement (ES estimator) but.. also large relative to the

reduction of variability (IE/c estimator) (This condition 'is 'true

for all cases with one exception, noted in the Block data in Table

for ES = .01 and I75 /NM = .52.). 'However, the "magnitude" of the

effect implied Joy the IE/c estimates and the corresponding confi-

dence intervals are not as strong as those implied by the ES index

based upon the previou-sly suggested )guidelines. In the presence of

homogeneous variances, the results are reversed. For the 8 ES

estimators greater than the absolute value of .49, only one-1En

index is significant, compared to the largeeffect sizes reported.

Consequently, in the presence of homogeneous variaLes,:although

-21-
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TABLE 4: Comparisons Between lEic and ES for Bloom Data

SE NE xC
SC NC 1 E/C IE/C Confidence`.

Interval .Estimator

. Heterogeneous Variances

74,00 18.40 1985 55.30 19,10 1271 .72 (.67, :77)* .98

60.70 10.10 15 46.50 15,00 93 .52 (.25, ..79)* .95

69.30 17.30 1723 49.50 22.30 1310 '.55 (.51, .59)* .89,

71.40 21.40 1895 52.80 21.1-0 1410 .75 (.69, .80)* .88

78.20 4.50 113 72.40 6.70 113 .62 (.47, .77)* .87

73.50 19,00 18.06 54.30 22.30 1104 .63 (.58, '.68)* .86

3.52 0.50 98 2.51 1,40 75 .26 (.17, .34)* .72

90.30 ,5.20, 20 85.90 10.10 21 ..49 (.20,, .76)* .44.

Homogeneous Variances'

30.30 3.80 30 26.10 4.70 21 .70 (.33; 1.07) .89

64,40 16.30 19 52,80 13.20 24 1.01 (.41, 1.61) .88

74.60 12.40 33 64.40 12.60 20 .85 (.39, 1.29) .81'

68.50 13.90 26 56.90 16.00 33 .72 (.36, 1.08) .72

120.30 23.90 17 99.00 35.40 17 .56 (.18, .94)* .60

73.10 12.10 168 66.80 )1.90 92 .93 (.70, 1,16) .53

3.46 0.59 24 ' 3.07 0.79 22 .67 (.29, 1.05) .49

77.10 12.00 20 71.46 1

,
14.70 .17 .76 (.29, 1.23) .39

61.30 8,10 9 56.10 1 ",4. 10 9 .52 (.06, .98)* .37

13.50 4.50 ,34 15.90 5.60 37 .94 (.49, 1.30 -.43

59.00 14.80 '31 67.40 17.00. 30 .99 (.50, 1.48) -.49

*Significant difference between the ML and 'control group. All confidence intervals

are calculated at tha 99' percent level
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the ES estimator is large relative to,the level of.-achievement'

differences, the reduction in the variability is minimal.

Table 5 present the results of Table 4, in a different prespec-

tive, emphasizing the importance of.examining the component ratios

-of means and standard deviations,4n order to clarify the results of

the preceding discussion. The format of Table 5 parallels that of

Table 4. The first apparent trend is that the component ratios of

the means and standard deviations for the homogeneous variance group

of comparisons exceed those of the heterogeneous variance group,

indicating that the means and standard deviations of the ML and

:control groups are approximately equal numerically in the homogeneous

group. Of the two significant IE/c indices in the homogeneous group,

one apparent explanation for their significance is implied by the two

smallest standard deviation ratios, .68 and .57 associated with nearly

equivalent mean ratios of .82 and .92 respectively. That is,.in the

case of SE /SC = .57, the ML groups' standard deviation is .on.ly 57

percent of the control group's standard deviation; and in the

presence of a mean ratio 70-TE = .92, results in significance.

similar occurrence is exhibited in the heterogeneous grOup of

comparisons for SE /SC equal to .67 and .51 relativeto 7c5E equal

to .93 and .95 respectively. Consequently, the interactions of the

two component ratios comprising: IE/c do contribute to the inter-

pretation and understanding of IE/c. Simulation studies are

-23- 28



TABLE 5. Comparisons of the Component Ratios of the IE/c Index

SE /SC, 7c/7-E IE/C ES Estimator

Heterogeneous Variances

.72

.52

.55

.75

.62

.63

.26

.49

.98

.95

.89

.88

.87

.86

.72.

.44

.96 .75

.67 .77

.78 .71 _
1*01 .74
.67 .93
.85 .74

.36 .71

.5' .95

.,

Homogeneous Variances --

.81 .86 .70 .8:
1.23 .82 1.01 .88
.98 .86 .85 . v'.81
.87 .83 .72 Z .72
.68 .82 .56 .60

1.02 .91 .93 .53
.75 .89 .67 .49
.82 .93 .76 .39
.57 .92 .52 .37
.80 1.18 .94- -.43
.87 1.14 .99 -.49*
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directed at investigating the effects of sample size relative to

the sampling variance'of IE/c are reported in Appendix R.

SUMMARY

The index proposed in this paper is advanced as an additional

measure of treatment effect, speCifically applied to experimental

programs where both level and variability of the variable under

study is of dual concern. The proposed effect variability esti-

mator, compa'red to the ES estimator and presently used to measure

the effect of ML programs:

1. utilizes the means and standard deviationS of all treatment

conditions to be compared;
1

2. does not go to zero in the presence of equal means and

te-terogeneous or homogeneous variances;

3. provides for enhanced interpretation \and understanding via a

straightforward examination of theCompOnent ratios and

heir relative impact;

4. fa ilitateS the rank ordering.of treatment effects within

experimental studies among all treatment groups;.

empli sizes the dual nature of-"effect size" relative to

both eel of achievement and reduction of variability

within the context of ML experiments.

-25-



The importance associated with both level and variability of

achievement, especially relevant to ML experiments, demands the

development of techniques to capture and illuminte these conditions.

This paper is an attempt to resolve a preplexing problem. At

present work is underway, directed at investigating the distri-

butional properties of IE/c and comparing ,the power of IE /C rela

tive to ES under the conditions discussed.
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APPENDIX B

Derivation of the Large Sample Normal Approximation for IE/c
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LARGE SAMPLE NORMAL APPROXIMATION

The derivation of the larye sample normal approximation for

IE/c appeals to the delta (6) method discussed in Rao (1973):

Let Tn be a k-dimensional statistic (Tin,..Tkn) such that the

asymptotic distribution of fr(Tin - Ai), i = 1...k, is

k-variate normal with mean zero and dispersion matrix 2. (G)j),

Let be q functions of k- variates and each gi be,totally

differentiable. Then the a.d. of VT [9i(T1n,...Tkn)-91(g1,...Q0],

i = 1, ...,q, is q-variate normal with zero means and dispersion

matrix GlEG', where G = (S9i/S9j). For IE/c, let

r=

/512

1522

X2

\X1

and

1T12

T22

U 2
(1)

where Tr,,N(i1)2), and assume that the asympototic distr;ibution of

v7r - is N(o, ) where is defined as

r
2 T 1 4 0 0 0

0 2 T 2 4 0 0

0 0 T22 0

0 0 0 T 1 2

(2)



Define the function g to be g 1V772.(T3/T4), then the 6-method

method yields

Eg(z)-g(,q)]N(9,Alai) (3)

where A (aii) and aii = 6gaTi evaluated at T = 9 . Taking the

partial derivatives of g(T) and calculating A:EA' yields

AAA' = g2(L) 1 g12T1-2 4.022T2-24 92T3-2 + g1T4-2 (4)

Evaluating A:EA' at T = 9 and recalling that (01 = T12, g2 = T22,

93 = u2 and 94 = ul) yields

07.2 = A2A' = (6-12A.722).(u2/u1)2 [1 + 0.22/u22 012/u12] (5)

The asymptotic distribution of IE/c is

rn ['En (071/u1)03-2/u2)1^-N(0,A2A1) (6)

and the corresponding large sample normal approximation is

IE/c^,NE(Gilu1)/(6-2/u2), AZA1].

Substituting the respective sample statistics results in a test

statistic of no difference between the treatment groups of

-29-



and a corresponding confidence interval of

IE/c,- sp7) < cvE/cvc < IE/c c4/2 (tr./

For unTlual sample sizes 0-.2 becomes

rs.

(8)

(9)

a-.2 = C(131/T2).(u2iu1)i-
nl n2

2 Na + n2 N (C2/u2)2 N 0-i/u1)2
(116)

n2 7.11

where N = ni + n2, and IE/0/N UT1/152)/(u2/u1)4(7.2/N].

ACCURACY OF THE LARGE,SAMPLE APPROXIMATION

The statistical manipulations above result in a large sample

approxiMation to the distribution of IE/c. In order to check the

usefulnesg- of this approximation for small sample's, a simulation

study was connucted. The subroutine GGNML o'f the International

MatheMatical and Statistical Libraries,(1977) was used to generate

standard normal eviates. Tale 81, gives the represenative values

of IE/c used in thelsimulatioos. These were chosen to represent a

range of values that would be considered likely in experimental

studies such as the mastery learning studies under consideration

-30-.
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"ere. Caution.is recommended, however, in making interpretations

beyond the range reported.

In each simulation, the experimental and control group sample

sizes were -chosen- be equal, that is n nE = nt. The normal

deviates were generated as two independent vectors of length n,

one fo'r the experimental group and one.,for the control group. The

sample means and standard deviations for each were then found,

allbWing the computation of IE/t., -The means and variances of the

simulated IEit's. for the 14 types'of simulation chosen, are given

in Tables B2, B3 and B4. Also shown are the proportions of confi-

dence intervals which contained the true value of IEit 'with certain

nominal significance levels., These proportions were found by

noting, for each simulation, whether the true value of IE/t was

Within the nominal confidence interval calculated using the sample

value of IEit and the sample yalue ofT. (as given in equation 9);.

these .inqandeswere accumulated for each of the nominal signifi-

cance levels and then divided by the total number of simulations/to

give the result. The proximity of thse proportions tothe nominal

level is an indication of the accuracy of the large sample approxi-
-

matibn.,

The first series of simulations are reported in Table 82; this
z

series contrasts the performance ofrhe approximation as' the

-31-
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4erimental standard deviation,,inflates_and deflates, while the
.

other parameters remain constant. Consider' first the column of

means; this column revealed a tendency to overestimate IF /C. The

bias declines from about 6 percent for the case n = 10, to abOu

2.5 percent for n = 20, down to about 1 pertent for-n = 50. Thi

bias carlibe traced to the fundamental assymmetry in the distribution .

of.ithe standard errors; it is of noteworthy size k17. the simulations

-.at n =
.

10 .suchuch Cases should thereby'be treated with'caution,

but its performance for the large sample sizes is quite within

the bounds suitable for practical application. The story told by

the proportion of confidence intervals containing lEic is rather

similar. Here, all values found match the nominal ones quite well

except for the n = 10 cases. There is a small but marked tendency
,

for the empirical 'proportion to bebelow the nominal. ones. This

may he due to bias-of the estimator,4tendency for the variance

estimator. to underestimate the twice variation, or a combination

of the two. This issue cannot be fully clarified until an unbiased .

estimator is found.

The second series of simulations is reported in'Table 83; this

series contrasts the performance of the apOroxima,tion as the experi-

mental mean shifts and the other parameters remain constant., The

results give the same, picture: the approxiMationis doing quite
\7 \

.well for the case n = 20 and upwards, but'is pOor for n =.10. The

-32-



third series of simulations is reported :fable 84; here the

experimental means and standard deviations are simultaneously

manipulated, but the experimental tbefficient of variation and the

control group parameters are kept constant. In this series also,

the, approximation holds up well for n = 20 and upward, but is poor

for n = 10.

These results indicate that (subject to the preVious remark on

caution in extrapolating simulation results) the approximatioo is

useful when there are 20,or more cases in each of the experimental,

/and control groups, but that it should not be used for smaller

sample groups. Work is continuing on finding a correction for the,

biaS in the estimator JE/c



TABLE B1. Representative Values of lEic

Simulation IE/C

1 1..00 ) 10.0 1.0 10.0 1.00

2 1.25 / 10.0 1.0' 10.0 1.25

3 1.50 / 10.0' 10.0 1.50

4 0.75 ,/ 10.0 /1.0 10.0 0.75

5 0.56/ 10.0 71.0 10.0 0.50

6 0.25 10.0 // 1.0 10.0 0.25

7 0,9091 10.0 / 1.0 1l.0 . 1.60

8 V.8333. 10.0 1.0 12.0 1.00

9 /1.1111 10.0 1.0 9.4 1.00

10 1.25 10.0 1.0 8 °.0 1.00

11 1.00 10.0 1.0 14.0 1.40

12. 1.00 10.0 1.0 12.0 1.20

13 1.00' 10.0 1.0 8.0 0.80

14,
_

6.0 0.607



TABLE B1. Reprentative Values of lEic

Simulation EiC
c

1 1.00 10.0 1.0/ .19.0 1.00

2 1.25 I 10.0 1.9 10.0 1.25

3 1.50 / 10.0 1.0 10.0 1.50

4 0.75 10.0 /1.0 10.0 0.75

5 0.50 10.0 /1.0 10.0 0.50

6 0.25 10.0 // 1.0 10.0 0.25

7. 0,9091 10.0 / 1.0 11.0 1.90

8

9

10

V.8333

/1.1111
1.25

10.0
10.0
10.0

1.0

1.0
1.0

12.0

8^.0

1.00

1.00
1.00

11 1.00 10.0 1.0 14.0 ' 1.40

12
13

1.00.
1.00

10.0
10.0

1.0

1.0

12.0
8.0

1.20

0.80
6.0 _0.6014,



'TABLE 83.': Small Sample Accuracy of confidence Intervals for IE/c:
Equal Standard Deviations/and Differing Means

//Proportion of confidence intervals
Sample Size Mean Variance / containing IE/c with;oMinal

sipificance,levelnE
nC

IE/c IE/r /

.60 .70 .80 2:90

7'
Simulation 7 I = 0:9 091E/C -z

..

10 .,9553 .1202 .576 .672 .763 .865

20 .9386 .0482 .599 .695 .785 .890

30 .9193 .0302 ..6,02 .688 .789 .898.

40 .9250 .0215 608 .707 .807. .904

50 .9139 .0184 .583 .679 .790 .885

Simulation 8 I
E/C

= 0.8333

10 .89582 .1047 .571 .680 .784 .873

-20 564 :0421 .582 .686 .782 .880

30. .8452 .0271 .581 .686 .799 .886

40 i .8467 .0204 .574 .674 .776, .889-

50 ir .8383 .0150 .606 .700 '.798 :886

Simulation 9, I
E/C

1.1111

10 1.1865 .1849 .563 .667 .775 .870

20 1.1483 .0792 .596 .695 .794 .887

30 1.1293 .0479 .579 .690 .785 .886

401.1267- .0337 .603 .702 .802 .894

50 1.1216 .0290 .586 .687 .790 .881

Simulation 10 I
E C

= 1:25

10 1.3273 .2561 .558 .665, .771 .869

20. 1.2830 .0986 .581 .689 .791 .887.,

30 1.2704 .0609 .588 .676 .786 :893

40 1.2771 .0469 .580 .676 .783 .891

50, 1.2642 .0355 .565 .666 .778 .880

.95 .99

-.

.910 .952

.947-, .980

.942 .978

.952 .984'
'.941 .984

:918 .962

.934. .969

.929 .971

.941 .978

.938, .985

.914 .952

.936 .978

.936 .979

.944 .983

.929 .980

.920\ :962

.936 .976

.940 .976

.945 .985

.941 .981

- NOTE: Each of the simulations is based on 2000 cases.

-36-: 46



TPBLE B4. Small Sample Accuracy of Confidence- Intervals for IE/c:,
Differing Means and Standard Deviations

SaMple Size

n = n
E C,

Mean

I
E/C

Propprtion of confidence intervals
Variance containing IE/c with nominal

'

I signi fi cance level
F/C .60. .70 .80 .90 .95 .99

SimulationllIE/C = 1.0

10 1.0620 .1593 .552 .645' .745 .846. .899 .948
20 , 1.0224 .0649 .579 .678 .782 .872 .917 .972

30 1.0097 .0364 .5.96 .693 .792 .893. .944 .979

40 1.0159 .0285 .600 .694 .791 .900 . .946 :986

50 1.0066 .0212 .595 .694 .793 .897 .945 .981

Simulation 12 I
E/C

1.0

10 1.0850 .1712 .549 .652 .759' .868 .916 .955

2,0 1.0372 .0612 .585 .684 .789 .890 .941 .975

30 1.0180 .0407 .561 .664 .775 .876 .930 .979

40 1.0187 .0279 .591 .692. .798 .898 .945 .982

50 1.0081 .0227 .584 .593 .795 .892 .943 .985

Simulation 13 I
E/C

= 1.0

10 1.0.732 .1649 .572 .673 ,.774 ,875 .918 .960

20 1.0328 .0653 .576 .678 .779 .876 .922 .966

30 1.0208 .0382 .601 .693. .795 .891 .939 .979

40' 1.0103 .0285 .596 .689 791 .885 .933 .980

50, 1.0138 .0227 ,595 .695 .796. .890 .941: .980

Simulation 14 IE/c .1.0

10 1.0676 .1579 .566". .666 .776 .880 .921 .959

20 1.0252 .0615 .585 .689-- .784 .880 .931 .968

30 1.0158 .0382 .590 .694 .801 .887 .939 .977

40 1.0131 .0280 .598 .697 .-.797 .896 .938 .980

50 1.0131 .0217 .585 .685 .802. .902 .948 .983

NOTE: Each of the simulations is based.on 2000 cases.


